博客
关于我
【alg4-有向图】Kosaraju算法(计算强连通分量)
阅读量:684 次
发布时间:2019-03-17

本文共 2284 字,大约阅读时间需要 7 分钟。

有向图中的强连通性是图论中一个重要的概念,它描述了两个顶点之间的相互可达性。两个顶点v和w被称为强连通的,当且仅当它们互为可达,也就是在有向图中既存在一条从v指向w的路径,也存在一条从w指向v的路径。强连通性具有自反性、对称性和传递性,这些性质使其成为一种等价关系。基于这种等价关系,有向图可以划分为多个强连通分量,每个强连通分量是最大的由相互强连通的顶点组成的子集。

强连通分量的划分与无向图中的连通性类似,但有向图中的连通性要求双向的可达性。一个有向图可能包含1到V个强连通分量,其中V是图中的顶点总数。一个强连通图(即每个顶点都可以从任何其他顶点到达)只包含一个强连通分量,而一个有向无环图(DAG)则包含每个顶点一个强连通分量。

Kosaraju算法是一种有效地找出有向图中的强连通分量的资源敏感算法。其核心思想是通过两次深度优先搜索(DFS)来确定强连通分量。第一次DFS运行在原图的反向图上,生成一个顶点的逆后序序列。第二次DFS在原图上按照这个逆后序序列进行处理,每次递归调用处理的顶点都属于同一个强连通分量。

Kosaraju算法的关键性质是其构造函数中的每一次递归调用所标记的顶点都在同一强连通分量中。这一点由该算法的命题所证实,这使得Kosaraju算法成为强连通性分析的经典方法之一。

以下是一个实现Kosaraju算法的Java代码示例:

package section4_2;public class KosarajuSCC {    private boolean[] marked;    private int[] id;    private int count;    public KosarajuSCC(Digraph G) {        marked = new boolean[G.V()];        id = new int[G.V()];        DepthFirstOrder order = new DepthFirstOrder(G.reverse());        for (int s : order.reversePost()) {            if (!marked[s]) {                dfs(G, s);                count++;            }        }    }    private void dfs(Digraph G, int v) {        marked[v] = true;        id[v] = count;        for (int w : G.adj(v)) {            if (!marked[w]) {                dfs(G, w);            }        }    }    public boolean stronglyConnected(int v, int w) {        return id[v] == id[w];    }    public int id(int v) {        return id[v];    }    public int count() {        return count;    }    public static void main(String[] args) {        int[][] data = {            {4, 2},            {2, 3},            {3, 2},            {6, 0},            {0, 1},            {2, 0},            {11, 12},            {12, 9},            {9, 10},            {9, 11},            {8, 9},            {10, 12},            {11, 4},            {4, 3},            {3, 5},            {7, 8},            {8, 7},            {5, 4},            {0, 5},            {6, 4},            {6, 9},            {7, 6}        };        int vn = 13;        int en = 22;        Digraph digraph = new Digraph(vn, en, data);        KosarajuSCC scc = new KosarajuSCC(digraph);        System.out.println(scc.count());        System.out.println(scc.id(1));        System.out.println(scc.id(2));        System.out.println(scc.id(9));        System.out.println(scc.id(6));        System.out.println(scc.id(8));    }}

转载地址:http://aichz.baihongyu.com/

你可能感兴趣的文章
nodejs 读取xlsx文件内容
查看>>
nodejs 运行CMD命令
查看>>
Nodejs+Express+Mysql实现简单用户管理增删改查
查看>>
nodejs+nginx获取真实ip
查看>>
nodejs-mime类型
查看>>
NodeJs——(11)控制权转移next
查看>>
NodeJS、NPM安装配置步骤(windows版本)
查看>>
NodeJS、NPM安装配置步骤(windows版本)
查看>>
nodejs下的express安装
查看>>
nodejs与javascript中的aes加密
查看>>
nodejs中Express 路由统一设置缓存的小技巧
查看>>
nodejs中express的使用
查看>>
Nodejs中搭建一个静态Web服务器,通过读取文件获取响应类型
查看>>
Nodejs中的fs模块的使用
查看>>
NodeJS使用淘宝npm镜像站的各种姿势
查看>>
NodeJs入门知识
查看>>
nodejs包管理工具对比:npm、Yarn、cnpm、npx
查看>>
NodeJs单元测试之 API性能测试
查看>>
nodejs图片转换字节保存
查看>>
nodejs在Liunx上的部署生产方式-PM2
查看>>